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The basis of the conformal-mapping method for topographic-wave problems of 
Johnson (1985) is discussed in greater detail by considering the invariance under 
conformal mapping of the linear, barotropic, potential-vorticity equation, noted in 
Davis (1983). A method is presented for using this property to construct further 
solutions for waves propagating over varying topography. Results are given for 
semi-infinite channels and elongated basins. A coordinate system is constructed that 
approaches a Cartesian system exponentially fast with distance from end-walls. For 
exponentially sloping topography the solutions for infinite channels, semi-infinite 
channels, and basins have the same structure and dispersion relation as waves in an 
elliptical basin, discussed in Johnson (1987). The structures presented there can thus 
be considered as in some sense universal for exponentially sloping topography. 

1. Introduction 
In  a recent paper (Johnson 1985), a conformal-mapping method was introduced 

to transform the problem of topographic waves approaching a cross-step wall into 
that of waves propagating along a channel, from which a solution followed directly. 
The present work discusses the basis of this method in greater detail and presents 
examples for topographic waves in semi-infinite channels and elongated basins. 

In  52 a brief derivation is given of the result that the barotropic, rigid-lid, 
topographic wave equation is invariant under conformal mappings, a property noted 
by Davis (1983). The vast classical literature on conformal mappings is thus available 
for solving topographic wave problems in various geometries. The relationship of 
this result to that of Rhines & Bretherton (1973), on depth profiles for which the 
topographic wave equation reduces to Helmholtz’s equation, is discussed. 

Section 3 presents briefly the structure of topographic waves in a symmetric infinite 
channel. The dispersion relation for topography varying exponentially across the 
channel and constant along the channel is precisely that for topographic waves in 
an elliptical basin, given in Johnson (1987). (called I hereinafter). Waves propagate 
in both directions along the channel, being concentrated above the slope favourable 
to their direction of propagation (i.e. with shallow water to their right). The 
topographic wave structure and dispersion relations of I are thus in some sense 
universal, as is borne out in the following sections. 

The example chosen to illustrate use of the conformal property is introduced in 
$4, which considers the problem of waves propagating in a semi-infinite channel. It 

t Permanent address: Department of Mathematics, University College London, Gower Street, 
London, WClE 6BT, UK. 
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is shown that the semi-infinite channel can be mapped conformally onto the infinite 
symmetric channel of $3. Although more general depth variations can be considered, 
attention is restricted to depth profiles exponentially varying in the cross-channel 
coordinate and independent of the along-channel coordinate for which the topo- 
graphic wave equation has constant coefficients. The conformal-mapping method has 
generated bottom topography satisfying the Rhines & Bretherton (1973) criterion, 
see (2.4) below. Results in I show the necessity of considering waves propagating in 
both directions and the derived cross-channel structures and dispersion relation are 
precisely those of I, once allowance is made for the renamed coordinates. Topographic 
waves propagating into the channel concentrated against one wall move towards the 
channel end where they are smoothly turned to propagate out against the opposite 
wall. The coordinate system chosen for the semi-infinite channel approaches expo- 
nentially fast the Cartesian system for an infinite channel and thus closed-basin 
solutions are obtained in $5 by reflections about the channel centreline and open 
boundary and judicious choice of the along-channel wavenumber. For a basin of 
lengthlwidth ratio of 2 this introduces an error of less than 0.2 % and in the presented 
examples, with an aspect ratio of 6, the error is of order e-40. Section 6 contains some 
general results following from the analysis and a brief comparison of predicted periods 
with those observed in intermontane lakes. 

2. Invariance principle 

(Rhines 1969) as 

where h is the depth, 2 a unit vector along the axis of rotation and $ the 
depth-independent mass-transport stream function. Perhaps the simplest demon- 
stration of invariance follows by continuing the analysis of Mysak (1985). Introduce 
curvilinear coordinates (x1, x,, z ) ,  with corresponding scale factors (hl, h,, 1 ) .  Then 
(2.1 ) becomes 

The non-dimensional linear barotropic potential-vorticity equation can be written 

V.(h-'V$r,)+ (V$ h Vh-')*? = 0, (2.1) 

For any coordinate system (xl, x2) obtained by conformal mapping from Cartesian 
coordinates (x, y), the Cauchy-Riemann equations imply that the scale factors h, and 
h, are equal, and (2.2) becomes 

The topographic wave equation is invariant under conformal mappings. This is the 
property used in Johnson (1985) and includes the elliptical coordinates discussed by 
Mysak (1985), who considers h = h(x,) so that the final term in (2.3) is absent. It 
appears that  this property was first noted by Davis (1983) when discussing shelf- 
similar topographies. 

Rhines & Bretherton (1973) note an alternative reduction of the topographic wave 
equation (2.3), to a Helmholtz equation with non-constant wavenumber, valid 
whenever the topography satisfies 

V2(logh) = 0. (2.4) 
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Davis (1983) presents a different derivation of this result. The conformal-mapping 
invariance differs significantly from the Helmholtz reduction as i t  requires no 
restriction on the topography considered, and so is useful in numerical solutions in 
unusual geometries. However, in analytical applications it appears most useful to 
consider topographies for which (2.3) has constant coefficients, i.e. log h is a linear 
function of x1 and x2 and so satisfies (2.4). The example in $4 is of this form. 

3. Infinite symmetric channel 

position along the channel (i.c. h = h(y )  alone). Equation (2.3) reduces to 
Consider the channel IyI < ys, -00 < x < 00 with a depth profile independent of 

(3.1) h-’$zzt + (h-’+& + ( W y  II., = 0. 

conditions $ = 0 (y = fy,). (3.2) 

Restricting consideration t o  flows with no flux along the channel gives the boundary 

For even h, i.e. symmetric channels, (3.1) is invariant under the transformation 
(x, y, t )  + (x, -y, - t ) ,  and so for each wave propagating in the positive x-direction 
there is an identical wave propagating in the negative x-direction, related to  the first 
by reflection about the channel centre1ine.i Thus look for a solution of (3.1) 
corresponding to  a wave propagating in the positive x-direction, i.e. 

~l = Re {F(y) exp ( i d  - ikz)}, 

+2 = Re{F(-y) exp (iat+ikx)}, 

(3.3) 

(3.4) 

is then a solution corresponding to a wave propagating in the negative x-direction. 
The cross-channel function F satisfies 

with a and k positive, noting that the reflection, 

(h-lF’)’+ [kC’(h-’)’-  k2h-l] F = 0 (0 < IyI < ys), (3.5) 

F(YJ = 0, F( -ys) = 0. (3.6a, b )  

The form of the linear eigenvalue problem (3.5), (3.6) allows F to  be taken as purely 
real and so (3.3) and (3.4) reduce to 

lfkl = F(y) cos(kx-at), $h2 = F(-y)  cos(kx+at). (3 .7a,  b )  

As a simple example, consider the exponential depth profile 

h = (  (Id Yb) 

[-b(bl-!h)l (Yb IyI < ys)* 

Then (2.5) reduces to the standard shelf-wave equations 

t It can be shown that propagation in both directions occurs in any  channel whose depth 
increases monotonically from the banks t o  some central maximum ; however, the more restricted 
case is sufficient for the present illustration. 
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FIGURE 1.  The dispersion relation giving frequency as a function of along-channel wavenumber for 
a channel of half-width ys = 1.5, with flat-bottomed central section, IyI < yb = 0.5, and logarithmic 
slope b = 1 .  

The boundary conditions on (3.9) are (3.6) and the requirement that $ and its normal 
derivative are continuous at lyl = y,. Hence the cross-stream structure is given by 

F =( cosh ky-(k tanh kyb+a,)(k+al tanh kyb)-l sinh ky (lyl < y,) 

where 

(3.12 a, 6) 

the arbitrary amplitude has been chosen so that P(0)  = 1, and A, satisfies the 
eigenvslue relation G(A,) = 0 where 

G(Al) = (al+a2)(1+tanh2kyb)+2 k+' tanhkyb. ( (3.13) 

The structure of this solution is the same as that given in I .  The solutions differ solely 
because the curving end of the elliptic basin requires both leftward- and rightward- 
propagating waves to be present simultaneously and because periodicity in the basin 
restricts the alongshore wavenumber k to  integral values. Both of these effects are 
dealt with in the following sections. 

Once A, is obtained from (3.13), the corresponding frequency follows from (3.12a), 
which implies the upper bound 

Lh 
C T < -  

k2 ++b2 ' 

As noted in I, these relations take a particularly simple form when the flat-bottomed 
section is absent from the channel (i.e. yb = 0). I n  particular, (3.13) reduces to 
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FIGURE 2. Cross-channel structure of the infinite-channel solutions for the parameter values of 
figure 1. (a) The depth profile, 1-h, with h given by (3.8). The fundamental mode structure, 
normalized to have unit negative slope at ys, for along-channel wavenumbers (a) k = 10, ( e )  
k = 1 and (d )  k = 0.1. 

Y 

and it follows that for each k there are countably many eigenvalues A?) that satisfy 

( n - + ) n  < ysA?) < n7c (n = 1 ,2 ,3 ,  ...), ( 3 . 1 5 ~ )  

ysAy)+(n-a)n  (n,  k ,  or ys large). (3.15b) 

The solutions allowing for the flat bottom are, however, sufficiently straightforward 
to be discussed directly and certainly allow a closer matching of model topography 
with actual channel profiles. 

Figure 1 gives a graph of the dispersion relation for parameters ys = 1.5, yb = 0.5, 
and b = 1, corresponding to a channel depth profile whose central third is flat. The 
graph resembles standard shelf-wave dispersion relations with long waves non- 
dispersive, short waves dispersive and zero group velocity at  some finite alongshore 
wavenumber. For a given alongshore wavenumber, the fundamental mode has the 
shortest period. The shortest period for a given wave occurs for waves and slopes such 
that the total wavenumber and b are of the same order. 

Figure 2 gives the depth profile for these parameter values and the cross-channel 
structure of the fundamental mode for various along-channel wavenumbers. In each 
case the wave is concentrated on the channel side that lies to the right of the direction 
of propagation - the shorter the along-channel wavelength the greater the con- 
finement. The wave decays away from the slope region favourable to its direction of 
propagation. 

4. Semi-infinite channel 

shown in figure 3 (a ) .  The transformation 
Consider the semi-infinite channel IyI < in, z 2 0 with a cut on y = 0, (z 2 a) as 

cr + i7 = sinh (z + iy) (4.1) 

maps this region onto the half-plane cr 2 0 with the cut on 7 = 0 (g 
in figure 3 (b) .  The further transformation 

sinh a ) ,  shown 

cr+i7 sinh (z + iy) 
enh a sinh a 

6 + iq = cosh-' - = cosh-l 
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rl = fn 
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FIGURE 3. (a) The semi-infinite channel IyI < ?jn, x 2 0. Isolines of the (6,~)-coordinate system 
defined by ( + i ~  = cosh-1 [sinh (z+iy)/sinh a1 are included with negative values dashed. The cut 
along y = 0 for r 2 a is shown thickened. Here a = !gt. ( b )  The half-plane u 2 0 into which the 
channel of ( a )  transforms under the mapping u+ i7 = sinh (z+ iy). The cut is thickened and isolines 
of ( 6 , ~ )  are included. These are standard elliptic coordinate lines. 

maps this half-plane onto the strip 0 < y < in, - co < 6 c 00, and is equivalent to  
introducing elliptic coordinates through 

cr = (sinha) cosht cosy, 7 = (sinha) sinhtsiny. (4.3) 

Some isolines of 6 and y are included in figure 3. Far from the channel end (i.e. z 
(4.2) reduces to  

l), 

t+ iy = sgn y{x+ iy - log (sinh a )  - cosh2 a exp [ - 2(x+ iy)] + . . .}. (4.4) 

Isolines of ( E ,  7) differ from those of (2, y) by an amount of order exp ( -22) cash, a. 
One channel width from the end, for a of order unity or less, the two systems differ 
by less than 0.2 %. Isolines of ( E ,  7) correspond to  force lines and equipotentials for 
a charged semi-infinite plate inside a grounded semi-infinite, closed-end container. 

For a depth profile that  is a function of y alone (corresponding far from the channel 
end to the constant-cross-section infinite channel considered in the previous section), 
the conformal-mapping property of 3 2 implies that  the topographic wave equation 
has precisely the form (3.1) with (6 ,  y )  replacing (2, y). The boundary conditions in 
the present geometry are those of no normal flow through the channel wall and 
continuity of the stream function and its normal derivative across the cut 7 = 0 
(since h is continuous there). As pointed out in I, i t  is necessary to consider waves 
propagating in both directions, and thus look for solutions of the form 

where, without loss of generality, the frequency (r and alongshore wavenumber k can 
be taken as positive. The cross-channel functions Fl and F, satisfy, as in I, 

(h-lal)’+ [ kg-l(h-’)’- k2h-’] F = 0 (0 < 7 < qS), (4.6) 

my,)  = 0, (4.7) 

where the channel boundary has been taken to  be the curve y = ys (0 < ys < $). The 
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continuity of $ and +,, across q = 0 requires, from (4.5b) near 9 = 0, that $ be a 
symmetric function of 6 and +,, antisymmetric. Thus, as in I, 

F;(O)+F;(O) = 0, F,(O)-F,(O) = 0. (4.8a, b) 

System (4.6), (4.7), (4.8) is a well-posed linear eigenvalue problem for the frequency 
u and the cross-channel structured F1,,. I t s  form allows F1,, to  be taken as purely 
real and so (4.5) reduces to  

(4.9) $ = Fl cos(k6-d)+F2 c o s ( k t + d ) .  

Although the eigenvalue problem can be solved numerically, simply and directly, 
for arbitrary profiles h(r), a standard exponential profile gives much information on 
the structure of solutions. Consider the profile 

(4.10) 

for b > 0, and qb 2 0. The exponentially sloping region is confined near the channel 
walls, the bottom being flat within the region q < qb. Far from the endwall this profile 
reduces to  that considered in the previous section. Substituting (4.10) in (4.6) gives 
constant-coefficient equations in the regions qb < q < q, and 0 < q < qb. The 
solution of these equations satisfying (4.7), (4.8) and having + and @,, continuous a t  
q = qb is given in I (allowing for the interchange of the roles of 6 and q )  as 

I' a 
k 

cosh kqb + sinh kqb 

I' a 
k 

cosh kqb + sinh kqb 

where A,, A, are defined in the previous section, as are al, a2 once ys, yb are replaced 
by qs,  qb. The eigenvalue relation is again (3.13), unaltered from I, and the dispersion 
relation for qs = 1.5, qb = 0.5, b = 1 is given by figure 1. The sole effect, away from 
the channel end, of the introduction of the end is to force waves propagating in both 
directions to  be present simultaneously. A wave moving to the left down the channel, 
concentrated against the wall a t  y = ys, is smoothly turned by the channel end and 
emerges as a wave moving to the right concentrated against the wall a t  y = -9,. 

Figure 4 gives streamlines of the fundamental mode near the channel end at 
one-eighth-period intervals for the parameters qs = 1.5, qb = 0.5, b = 1, for which, 
away from the channel end, the cross-channel structures reduce to those of figure 2. 
The remaining disposable parameters are the along-channel wavenumber and the 
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F'IGURE 4. Streamlines at one-eighth-period intervals of the fundamental mode near the end of a 
semi-infinite channel for the parameter values of figure 1. The patterns at later times follow by 
symmetry. (a) Tightly bunched end contours (a = in), k = 4. Waves shorten and slow to squeeze 
through the narrow gap. (b)  A smoother channel end (a = in), k = 1 .  Waves pass smoothly round 
the endwall. Negative values are dashed and the zero line thickened. 

gap parameter a. For small a, waves decrease in wavelength and squeeze slowly 
through the steep topography of bunched coordinate lines a t  the channel end. This 
behaviour is shown in figure 4(a) where a = in and k = 4, and is closely related to 
the increasing wavenumber and decreasing speed of topographic waves approaching 
a cross-slope wall, discussed in Johnson (1985). For moderate a, of order the channel 
width, waves pass smoothly round the channel end without reduction of speed. This 
is shown in figure 4 ( b )  where a = in and k = 2. 

5. Elongated basins 
Topographic-wave modes for basins of arbitrary elongation could be found by 

mapping the basin interior onto a semi-infinite channel. Following the choice of the 
previous section, a suitable coordinate system could be obtained by considering 
the force lines and equipotentials for a charged plate inside a grounded box. The 
usefulness of such an approach in finding explicit solutions is limited as the mapping 
involves elliptic functions, losing the simplicity of the previous section. Modes for 
basins of length/width ratio of order unity have, however, been presented in I and 
so i t  is sufficient to restrict attention t o  elongated basins. 

The stream function @b) defined in terms of the stream function $ of the previous 
section bv 
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FIQURE 5. Normal modes in a basin for the parameter values of figure 1, and a gap of a = in. The 
basin is six times as long as it is wide. (a) The fundamental mode, (m, n) = (I ,  1); (b)  (m, n) = (2 , l ) ;  
(c) (m, n) = (1,2). The region of irrotational flow above the central third of the basin width is clearly 
visible. 
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is a solution for a basin of length 2L of the topographic-wave equation provided that 
$(b) and $Lb) are continuous at x = L. From the discussion of the previous section 
it follows that the continuity conditions are satisfied with error of order 
exp ( - 2 L )  cosh2 a provided that $ is periodic in 6 with period a multiple of tL where 
EL = L-log (sinha). The upper sign in (5.1) corresponds to even multiples and the 
lower to odd multiples. Equation (4.9) shows that $ has the required form provided 
k = mx/21L, m = 1 ,2 ,3 ,  . . . . The inclusion of a second endwall on the channel restricts 
the long-basin wavenumber to discrete values as in the elliptical basin solutions of 
I. For a basin twice as long as wide the continuity conditions are satisfied with an 
error less than 0.2% and this error decreases exponentially with increasing 
length/width ratio. Reflection about the figure-end and about the line y = 0 in figure 
4(a, b)  thus generates the modes (m, n)  = ( 3 , l )  and (4 , l )  respectively for the basins 
so formed. Figure 5 gives streamlines at one-eighth-period intervals for a basin of 
length-to-width ratio of 6 (so the continuity conditions are satisfied to order e-40) for 
the modes ( m , n )  = (1, l) ,  (2 ,  1) and (1 ,2 ) .  

6. Discussion 
The basis of the conformal-mapping method for the topographic-wave problems 

of Johnson (1985) has been discussed in greater detail by considering the invariance 
under conformal mappings of the linear, barotropic, potential-vorticity equation, 
noted in Davis (1983), and the method used to construct solutions corresponding 
to topographic waves propagating in a semi-infinite channel. The mapping 
was constructed so that away from the channel end the curvilinear coordinates 
approached, exponentially fast, standard Cartesian coordinates. This enables closed- 
basin solutions to be obtained with error decaying exponentially with increasing 
length/width ratio of the basin. The solutions for infinite channels, semi-infinite 
channels and basins are of the same structure and have the same dispersion relation 
as those in I for waves in an elliptical basin with exponentially sloping sides and a 
flat bottom. The results presented in I are universal for bathymetry that can be 
mapped conformally onto a semi-infinite channel with exponential topography. The 
sole effect of differing geometries lies in the precise values of the parameters appearing 
in the dispersion relation. The invariance property divides topographies into equiv- 
alence classes in which members of the same class are related through conformal 
mappings. 

The present results can be applied to estimating topographic periods in elongated 
intermontane lakes. Previous estimates in Mysak (1985) and I using the elliptical- 
basin model suffer from the weakness that choosing disposable parameters to model 
the lake ends a t  all acurately leads to unrealistic lengthlwidth ratios for the basins. 
The present model removes these difficulties. The four parameters a, b, r] ,  and qS are 
available to model the lake end and, additionally, to prescribe what portion of the 
central lake region is flat. The basin length is determined independently. The 
bathymetry of Swiss lakes shown in Mysak (1985) and Mysak et al. (1985) indicates 
that reasonable choices of a, b, qb and r ] s  are of order unity. The length-to-width ratio 
of the lakes is of order 10 and thus the alongshore wavenumber k is of order 0.05m 
for mode numbers m = 1 ,2 ,  . . . . Computations from the dispersion relation show that 
realistic values of wave periods occur only for k of order unity (as it is for the 
fundamental mode in an elliptical basin, for which periods are calculated in I). This 
leads to the conjecture that, if the reported oscillations in intermontane lakes are 
topographic waves, they may correspond to alongshore wavenumbers of order the 
length/width ratio, and not the fundamental mode as conjectured in Mysak (1985). 
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